204 research outputs found

    Priority-Based Content Delivery in the Internet of Vehicles through Named Data Networking

    Get PDF
    Named Data Networking (NDN) has been recently proposed as a prominent solution for content delivery in the Internet of Vehicles (IoV), where cars equipped with a variety of wireless communication technologies exchange information aimed to support safety, traffic efficiency, monitoring and infotainment applications. The main NDN tenets, i.e., name-based communication and in-network caching, perfectly fit the demands of time- and spatially-relevant content requested by vehicles regardless of their provenance. However, existing vehicular NDN solutions have not been targeted to wisely ensure prioritized traffic treatment based on the specific needs of heterogeneous IoV content types. In this work, we propose a holistic NDN solution that, according to the demands of data traffic codified in NDN content names, dynamically shapes the NDN forwarding decisions to ensure the appropriate prioritization. Specifically, our proposal first selects the outgoing interface(s) (i.e., 802.11, LTE) for NDN packets and then properly tunes the timing of the actual transmissions. Simulation results show that the proposed enhancements succeed in achieving differentiated traffic treatment, while keeping traffic load under control

    Cellular-V2X Communications for Platooning: Design and Evaluation

    Get PDF
    Abstract: Platooning is a cooperative driving application where autonomous/semi-autonomous vehicles move on the same lane in a train-like manner, keeping a small constant inter-vehicle distance, in order to reduce fuel consumption and gas emissions and to achieve safe and efficient transport. To this aim, they may exploit multiple on-board sensors (e.g., radars, lidars, positioning systems) and direct vehicle-to-vehicle communications to synchronize their manoeuvres. The main objective of this paper is to discuss the design choices and factors that determine the performance of a platooning application, when exploiting the emerging cellular vehicle-to-everything (C-V2X) communication technology and considering the scheduled mode, specified by 3GPP for communications over the sidelink assisted by the eNodeB. Since no resource management algorithm is currently mandated by 3GPP for this new challenging context, we focus on analyzing the feasibility and performance of the dynamic scheduling approach, with platoon members asking for radio resources on a per-packet basis. We consider two ways of implementing dynamic scheduling, currently unspecified by 3GPP: the sequential mode, that is somehow reminiscent of time division multiple access solutions based on IEEE 802.11p – till now the only investigated access technology for platooning – and the simultaneous mode with spatial frequency reuse enabled by the eNodeB. The evaluation conducted through system-level simulations provides helpful insights about the proposed configurations and C-V2X parameter settings that mainly affect the reliability and latency performance of data exchange in platoons, under different load settings. Achieved results show that the proposed simultaneous mode succeeds in reducing the latency in the update cycle in each vehicle’s controller, thus enabling future high-density platooning scenarios

    Slicing on the road: enabling the automotive vertical through 5G network softwarization

    Get PDF
    The demanding requirements of Vehicle-to-Everything (V2X) applications, such as ultra-low latency, high-bandwidth, highly-reliable communication, intensive computation and near-real time data processing, raise outstanding challenges and opportunities for fifth generation (5G) systems. By allowing an operator to flexibly provide dedicated logical networks with (virtualized) functionalities over a common physical infrastructure, network slicing candidates itself as a prominent solution to support V2X over upcoming programmable and softwarized 5G systems in a business-agile manner. In this paper, a network slicing framework is proposed along with relevant building blocks and mechanisms to support V2X applications by flexibly orchestrating multi-access and edge-dominated 5G network infrastructures, especially with reference to roaming scenarios. Proof of concept experiments using the Mininet emulator showcase the viability and potential benefits of the proposed framework for cooperative driving use cases1812não temMinistério da Ciência, Tecnologia, Inovações e Comunicações - MCTICThe research of Prof. Christian Esteve Rothenberg was partially supported by the H2020 4th EUBR Collaborative Call, under the grant agreement number 777067 (NECOS - Novel Enablers for Cloud Slicing), funded by the European Commission and the Brazilian Ministry of Science, Technology, Innovation, and Communication (MCTIC) through RNP and CTI

    On the optimization of power assignment to support multicast applications in HAP-based systems

    Get PDF
    The goal of this research work is to investigate how efficient High Altitude Platforms (HAPs) can be in supporting Multimedia Broadcast/Multicast Service (MBMS) in scenarios in which the terrestrial coverage is not available. Specifically, we propose to implement an effective Radio Resources Management (RRM) policy into the HAP Radio Network Controller (H-RNC), whose main aim is to increase the overall system capacity. The proposed technique achieves its goal by dynamically selecting the most efficient multicast transport channel in terms of power consumption, chosen amongst Dedicated Channel (DCH), Forward Access Channel (FACH), and High Speed Downlink Shared Channel (HS-DSCH). Advantages deriving from the joint use of channels belonging to different categories are exploited. Results achieved when using the proposed RRM are quite manifest and witnesses to the necessity of providing such a feature when deploying integrated HAP/Terrestrial platforms supporting MBMS services.Peer ReviewedPostprint (published version

    From theory to experimental evaluation: resource management in software-defined vehicular networks

    Get PDF
    Managing resources in dynamic vehicular environments is a tough task, which is becoming more challenging with the increased number of access technologies today available in connected cars (e.g., IEEE 802.11, LIE), in the variety of applications provided on the road (e.g., safety, traffic efficiency, and infotainment), in the amount of driving awareness/coordination required (e.g., local, context, and cooperative awareness), and in the level of automation toward zero-accident driving (e.g., platooning and autonomous driving). The open programmability and logically centralized control features of the software-defined networking (SDN) paradigm offer an attractive means to manage communication and networking resources in the vehicular environment and promise improved performance. In this paper, we enumerate the potentials of software-defined vehicular networks, analyze the need to rethink the traditional SDN approach from theoretical and practical standpoints when applied in this application context, and present an emulation approach based on the proposed node car architecture in Mininet-WiFi to showcase the applicability and some expected benefits of SDN in a selected use case scenario530693076FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP14/18482-

    A Survey on Rapidly Deployable Solutions for Post-disaster Networks

    Get PDF
    International audienceIn post-disaster scenarios, for example, after earthquakes or floods, the traditional communication infrastructure may be unavailable or seriously disrupted and overloaded. Therefore, rapidly deployable network solutions are needed to restore connectivity and provide assistance to users and first responders in the incident area. This work surveys the solutions proposed to address the deployment of a network without any a priori knowledge about the communication environment for critical communications. The design of such a network should also allow for quick, flexible, scalable, and resilient deployment with minimal human intervention

    Age of Information in Multi-hop Networks with Priorities

    Full text link
    Age of Information is a new metric used in real-time status update tracking applications. It measures at the destination the time elapsed since the generation of the last received packet. In this paper, we consider the co-existence of critical and noncritical status updates in a two-hop system, for which the network assigns different scheduling priorities. Specifically, the high priority is reserved to the packets that traverse the two nodes, as they experience worse latency performance. We obtain the distribution of the age and its natural upper bound termed peak age. We provide tight upper and lower bounds for priority updates and the exact expressions for the non-critical flow of packets with a general service distribution. The results give fundamental insights for the design of age-sensitive multi-hop systems.Comment: Submitted for publication to IEEE Globecom Conferenc

    Enhancing the 3GPP V2X architecture with information-centric networking

    Get PDF
    Vehicle-to-everything (V2X) communications allow a vehicle to interact with other vehicles and with communication parties in its vicinity (e.g., road-side units, pedestrian users, etc.) with the primary goal of making the driving and traveling experience safer, smarter and more comfortable. A wide set of V2X-tailored specifications have been identified by the Third Generation Partnership Project (3GPP) with focus on the design of architecture enhancements and a flexible air interface to ensure ultra-low latency, highly reliable and high-throughput connectivity as the ultimate aim. This paper discusses the potential of leveraging Information-Centric Networking (ICN) principles in the 3GPP architecture for V2X communications. We consider Named Data Networking (NDN) as reference ICN architecture and elaborate on the specific design aspects, required changes and enhancements in the 3GPP V2X architecture to enable NDN-based data exchange as an alternative/complementary solution to traditional IP networking, which barely matches the dynamics of vehicular environments. Results are provided to showcase the performance improvements of the NDN-based proposal in disseminating content requests over the cellular network against a traditional networking solution119sem informaçãosem informaçã

    Placement of Social Digital Twins at the Edge for Beyond 5G IoT Networks

    Get PDF
    As the fifth-generation (5G) and beyond (5G+/6G) networks move forward, and a wide variety of new advanced Internet of Things (IoT) applications are offered, effective methodologies for discovering time-relevant information, services, and resources are being demanded. To this end, computing-, storage-, and battery-constrained IoT devices are progressively augmented via digital twins (DTs) hosted on edge servers. According to recent research results, a further feature these devices may acquire is social behavior; this latter offers enormous possibilities for fast and trustworthy service discovery, although it requires new orchestration policies of DTs at the network edge. This work addresses the dynamic placement of DTs with social capabilities [social digital twins (SDTs)] at the edge, by providing an optimal solution under IoT device mobility and by accounting for edge network deployment specifics, types of devices, and their social peculiarities. The optimization problem is formulated as a particular case of the quadratic assignment problem (QAP); also, an approximation algorithm is proposed and two relaxation techniques are applied to reduce computation complexity. Results show that the proposed placement policy ensures a latency among SDTs up to 1.4 times lower than the one obtainable with a traditional proximity-based only placement while still guaranteeing appropriate proximity between physical devices and their virtual counterparts. Moreover, the proposed heuristic closely approximates the optimal solution while guaranteeing the lowest computational time
    • …
    corecore